

The role of dietary iron fortification in managing iron deficiency and iron deficiency anemia in early life

Iron deficiency (ID) is the most common micronutrient deficiency worldwide, with infants and children being

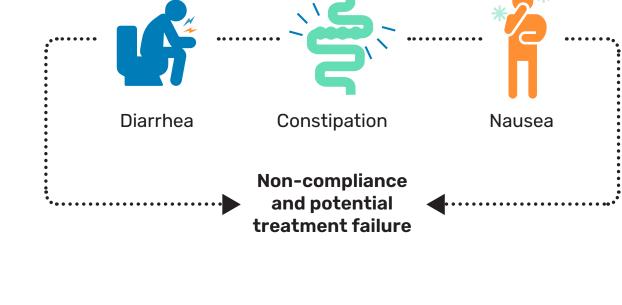
particularly at risk.1 ID is the most common cause of nutritional anemia among children. Globally, ID is the cause of anemia in 42% of anemic

children ≤5 years old.2 High prevalence of iron deficiency anemia (IDA)

among children aged 6-59 months in

India, South-East Asia and Africa³

Iron supplementation


(administration in higher dosage for severe ID/IDA)

Oral iron supplementation, although a common strategy in managing ID,

gastrointestinal effects⁷:

and vitamin D A randomized, double-blind controlled trial in children of ID with YCF aged 1 to 3 years8 Non-fortified cow's milk

Young-child formula (YCF) fortified with iron

Dietary fortification is a potent long-term strategy

tolerability to oral iron supplementation.

Clinical evidence supporting dietary fortification:

for preventing ID/IDA, particularly in infants with low

Guideline recommendations

(0.6-1.2 mg/kg/day)

Sources

iron-fortified between 3.6 and 14 mg/L

Follow-on formula should also be

Dietary iron is present as: Heme iron 10-12

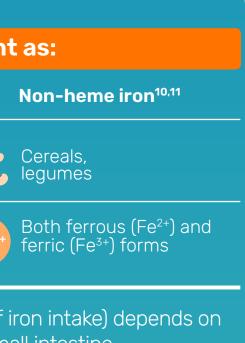
Meat,

Hemoglobin, **Iron form** myoglobin

is dependent on the iron salt form.

facilitated by reducing agents such as ascorbic acid present in the intestine.

Chronic diseases or


infections can lead to

suboptimal iron absorption

despite fortification or

supplementation¹⁴

The reduction of Fe³⁺ to Fe²⁺ is

Iron bioavailability (percentage or a fraction of iron intake) depends on the chemical form of iron in the small intestine. Bioavailability according to iron form: The bioavailability of **heme iron** (25%) is greater than that of non-heme iron (<5-20%). **Absorption rate** Absorption of **non-heme iron** of iron salt form

Dietary iron is poorly absorbed, resulting in adverse impact on the gut microbiome. 15,16

Proliferation of harmful

bacteria (Escherichia coli

and Salmonella spp.)

Iron supplements may

adversely impact the

infant gut microbiome and

cause the accumulation

of infectious pathogens,

leading to intestinal inflammation¹⁵⁻¹⁷

VITAMIN

100 mg/L ascorbic acid (molar ratio of iron to ascorbic acid 1:2)

Gut microbiota dysbiosis

Addition of

vitamin C-rich foods,

such as citrus fruits

to infant diet has been

Prebiotics can promote iron

microbiome development

Prebiotics are substrates for selective

utilization by host microorganisms. 17,21

3-week randomized controlled study in

prebiotics [galacto-oligosaccharides/ fructo-oligosaccharides (GOS/FOS)]22

Kenyan infants, who were fed a daily meal containing iron, vitamin C, with or without

bioavailability and balanced gut

recommended by WHO, Iron-fortified cow's milk in order to enhance iron absorption.20 increase in iron absorption¹⁵

FIA increased

by 26% with

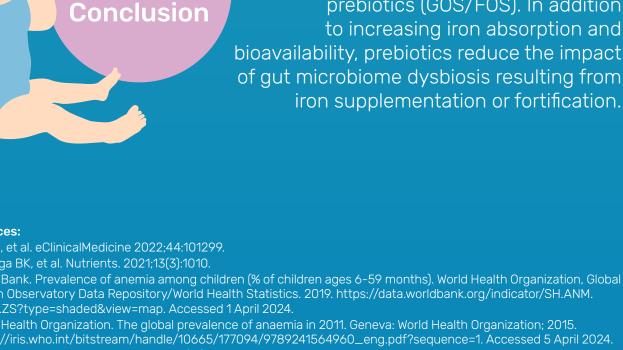
scGOS/IcFOS pre-intervention

Fractional iron absorption (%) 16.3%

Addition of GOS/FOS increases iron absorption by 60%, after 3 weeks of intervention²² 26.0% 20.5%

FIA increased by 60%

with scGOS/IcFOS


for 3 weeks

Iron-rich infant formulas are critical in

combating ID in early life and preventing IDA. However, the benefits of these formulas can be further enhanced by fortification with vitamin C and with prebiotics (GOS/FOS). In addition to increasing iron absorption and bioavailability, prebiotics reduce the impact

Addition of GOS/FOS also reduced inflammation,

as evident from lower calprotectin levels.22

iron supplementation or fortification. 3. World Bank. Prevalence of anemia among children (% of children ages 6-59 months). World Health Organization, Global Health Observatory Data Repository/World Health Statistics. 2019. https://data.worldbank.org/indicator/SH.ANM. 4. World Health Organization. The global prevalence of anaemia in 2011. Geneva: World Health Organization; 2015. https://iris.who.int/bitstream/handle/10665/177094/9789241564960_eng.pdf?sequence=1. Accessed 5 April 2024.

References: 1. Han X, et al. eClinicalMedicine 2022;44:101299. Mbunga BK, et al. Nutrients. 2021;13(3):1010. CHLD.ZS?type=shaded&view=map. Accessed 1 April 2024. 5. Mourad S, et al. N Am J Med Sci. 2010;2(10):461-466. 6. Bailey RL, et al. Ann Nutr Metab 2015;66(Suppl 2):22-33. 7. Amrousy DE, et al. Pediatr Res 2022;92(3):762-766. 8. Akkermans MD, et al. Am J Clin Nutr 2017;105(2):391-399.

15. McMillen SA, et al. Nutrients 2022;14(20):4380. 16. Georgieff MK, et al. Annu Rev Nutr 2019;39:121-146.

19. Zimmermann, MB, Hurrell RF. Lancet. 2007;370(9586):511-20. 20. World Health Organization. Nutritional Anaemias: Tools for Effective Prevention and Control. 2017. https://iris.who.int/ bitstream/handle/10665/259425/9789241513067-eng.pdf?

sequence=1&isAllowed=y. Accessed 5 April 2024.

21. Zakrzewska Z, et al. Microorganisms 2022;10:1330. 22. Mikulic N, et al. Am J Clin Nutr. 2024;119(2):456-469.

17. Rusu IG, et al. Nutrients 2020;12(7):1993. 18. Lynch SR, et al. J Nutr. 2003;133(9):2978S-84S.

9. Domellöf M, et al. J Pediatr Gastroenterol Nutr 2014;58(10):119-129. 10. Hertrampf E, et al. Congress Int. Soc. Hematol.; 1978, Paris, France. 11. Zimmermann MB, et al. Am J Clin Nutr. 2005;81(1):115-21. 12. Martínez-Torres C, Layrisse, M. Am J Clin Nutr. 1971;24(5):531–40. 13. Barber SA, et al. Br Med J (Clin Res Ed), 290(6470):743 –744. 14. Camaschella C. Blood 2019;133:30-39.

Danone Nutricia Campus